

X-Ray Surveyor

Mission Analysis (Version 8) Oct. 5, 2016

Change Log

- Version 8
 - Added LEO to the trade space
- Version 7
 - Fixed Version 6 where CTO and DAO delta-v tables were swapped
 - Revised CTO delta-v budget
 - Added explanation about CTO disposal requirement
 - FOMs now include environments
- ◆ Version 6
 - Updated Delta-V's to reflect 30 year consumables requirement
- Version 5
 - Updated timelines; shadow estimates; added FOMs

- Several candidate orbits are included in the trade space
 - ◆ SE-L2
 - LDRO
 - Chandra-type
 - Drift-away (Earth-trailing)
 - LEO
- Diagram, delta-v budget, and launch vehicle performance to each transfer orbit are provided in the charts below
 - Timelines for each option are currently being generated
- Orbit considerations include:
 - Delta-V requirements
 - Thermal and dynamic stability
 - Distance over time and the effect on communications
 - Assuming all options can fulfill the sky observing requirements
 - so no sky coverage analysis is included in these results

Baseline Orbit: SE-L2

◆ Sun-Earth L2 Halo

Direct orbit (no lunar gravity assist), 0 insertion

Max Y-excursion: 800,000 km
Max Z-excursion: 500,000 km
Based on JWST

Delta-V Budget: SE-L2

/	Start	MET	C3	Delta-V	ACS Tax		Total (m/
Event/Maneuver	Date	(Days)	(km2/s2)	(m/s)	(%)	(%)	s)
Launch	1/1/30	0.0	-0.70				
Despin	1/1/30	0.0		5	0%	10%	5.5
Post-TTI correction	1/2/30	1.0		41	5%	10%	47.4
Additional correction for late							
launch	1/2/30	1.0		8	5%	10%	9.2
MCC-1	1/6/30	5.0		7.5	5%	10%	8.7
MCC-2	2/5/30	35.0		5	5%	10%	5.8
MCC-3 / Other (optional)	4/5/30	94.0		5	5%	10%	5.8
Stationkeeping (30 years)	7/4/30	184.0		72.9	5%	10%	84.2
Momentum unloading (30 years)	7/4/30	184.0		43.5	0%	10%	47.9
Disposal	1/1/50	7305.0		1	0%	10%	1.1
TOTALS				188.9			215.5

Values are based on JWST analyses. MET values are approximate.

Eclipse and Distance: SE-L2

Topic	Value	Units
Time to spacecraft separation	129	minutes
S/C separation in sunlight?	yes*	
Average eclipse	none	minutes
Longest eclipse	none	minutes
Average time between eclipses	na	minutes
Minimum time between eclipses	na	minutes
Max distance** in 1 yr	1,500,000	km
5 yr	1,500,000	km
10 yr	1,500,000	km
20 yr	1,500,000	km

^{*} Trajectory can be designed such that separation occurs in sunlight, though this may impact launch windows.

^{**} These values assume orbit maintenance maneuvers are completed (if required).

- Very stable
 - No disposal required
 - Max distance from Earth
 - 500,000 km

DRO (Shown in rotating frame)

(Shown in rotating frame)

Delta-V Budget: LDRO

	Start	MET	С3	Delta-V	ACS Tax	Margin	Total (m/
Event/Maneuver	Date	(Days)	(km2/s2)	(m/s)	(%)	(%)	s)
Launch	1/1/30	0.0	-1.80				
Despin	1/1/30	0.0		5	0%	10%	5.5
Post-TTI correction	1/2/30	1.0		41	5%	10%	47.4
MCC-1	1/3/30	2.0		50	5%	10%	57.8
Lunar Flyby	1/6/30	5.0		162	5%	10%	187.1
MCC-2	1/10/30	9.0		155	5%	10%	179.0
LDRO Insertion	1/17/30	16.0		3	5%	10%	3.5
Stationkeeping (30 years)	7/4/30	184.0		7.5	5%	10%	8.7
Momentum unloading (30 years)	7/4/30	184.0		43.5	0%	10%	47.9
Disposal	1/1/50	7305.0		10	0%	10%	11.0
TOTALS				477.0			547.7

Values are based on analysis.

Eclipse and Distance: LDRO

Topic	Value	Units
Time to spacecraft separation	129	minutes
S/C separation in sunlight?	yes*	
Average eclipse	211	minutes
Longest eclipse	706	minutes
Average time between eclipses	118516	minutes
Minimum time between eclipses	12640	minutes
Max distance** in 1 yr	500,000	km
5 yr	500,000	km
10 yr	500,000	km
20 yr	500,000	km

^{*} Trajectory can be designed such that separation occurs in sunlight, though this may impact launch windows.

^{**} These values assume orbit maintenance maneuvers are completed (if required).

Chandra-Type Orbit (CTO)

- Earth-centered, highly eccentric orbit
 - Placed into final orbit by launch vehicle
 - ◆ 16,000 x 133,000 km altitude orbit, 28.5 deg (initially)
 - End-of-life disposal may pose a problem
 - Based on Chandra mission

Delta-V Budget: CTO

	Start	MET	С3	Delta-V	ACS Tax	Margin	Total (m/
Event/Maneuver	Date	(Days)	(km2/s2)	(m/s)	(%)	(%)	s)
Launch	1/1/30	0.0	na				
Despin	1/1/30	0.0		5	0%	10%	5.5
Post-TTI correction	1/2/30	1.0		0	5%	10%	0.0
Additional correction for late							
launch	1/2/30	1.0		0	5%	10%	0.0
MCC-1	1/6/30	5.0		0	5%	10%	0.0
MCC-2	2/5/30	35.0		0	5%	10%	0.0
MCC-3 / Other (optional)	4/5/30	94.0		0	5%	10%	0.0
Stationkeeping (30 years)	7/4/30	184.0		0	5%	10%	0.0
Momentum unloading (30 years)	7/4/30	184.0		43.5	0%	10%	47.9
Disposal	1/1/50	7305.0		302	0%	10%	332.2
TOTALS				350.5			385.6

Eclipse and Distance: CTO

Topic	Value	Units
Time to spacecraft separation	407	minutes
S/C separation in sunlight?	yes*	
Average eclipse	54	minutes
Longest eclipse	265	minutes
Average time between eclipses	6743	minutes
Minimum time between eclipses	326	minutes
Max distance** in 1 yr	200,000	km
5 yr	200,000	km
10 yr	200,000	km
20 yr	200,000	km

^{*} Trajectory can be designed such that separation occurs in sunlight, though this may impact launch windows.

^{**} These values assume orbit maintenance maneuvers are completed (if required).

- According to the Orbital Debris Program Office:
 - The current requirement for the mission you described is to maneuver the spacecraft at the end of mission to a disposal orbit above GEO with a predicted minimum perigee of GEO +200 km (35,986 km) for a period of at least 100 years after disposal."
- ◆ 100 years is a LONG time to propagate an orbit, so used Copernicus with Earth J2, moon, and sun as gravitating bodies
 - To be conservative, targeted GEO + 1200 km as minimum altitude
 - This resulted in a target initial perigee for the disposal orbit of about 39622 km altitude (46000 km radius)
- ◆ The delta-v for this maneuver is 302 m/s
 - much less than the initial estimate from DAS

We should assume that disposal is required.

Drift-Away Orbit (DAO), Earth-Trailing

- Launch spacecraft directly into heliocentric orbit
 - No insertion, station-keeping, or disposal maneuvers
 - Distance from Earth to satellite increases over time
 - Based on Kepler mission

Shown in rotating frame

Shown in inertial frame

Delta-V Budget: DAO

/	Start	MET	C3	Delta-V	ACS Tax		Total (m/
Event/Maneuver	Date	(Days)	(km2/s2)	(m/s)	(%)	(%)	s)
Launch	1/1/30	0.0	0.61				
Despin	1/1/30	0.0		5	0%	10%	5.5
Post-TTI correction	1/2/30	1.0		0	5%	10%	0.0
Additional correction for late							
launch	1/2/30	1.0		0	5%	10%	0.0
MCC-1	1/6/30	5.0		0	5%	10%	0.0
MCC-2	2/5/30	35.0		0	5%	10%	0.0
MCC-3 / Other (optional)	4/5/30	94.0		0	5%	10%	0.0
Stationkeeping (30 years)	7/4/30	184.0		0	5%	10%	0.0
Momentum unloading (30 years)	7/4/30	184.0		43.5	0%	10%	47.9
Disposal	1/1/50	7305.0		0	0%	10%	0.0
TOTALS				48.5			53.4

Eclipse and Distance: DAO

Topic	Value	Units
Time to spacecraft separation	129	minutes
S/C separation in sunlight?	yes*	
Average eclipse	none	minutes
Longest eclipse	none	minutes
Average time between eclipses	na	minutes
Minimum time between eclipses	na	minutes
Max distance** in 1 yr	0.1	AU
5 yr	0.6	AU
10 yr	1.1	AU
20 yr	1.8	AU

^{*} Trajectory will most likely be such that separation occurs in sunlight.

^{**} A higher launch C3 can perhaps reduce these values. Analysis is pending.

Low Earth Orbit (LEO)

Launch from CCAFS

- ◆ 550 km circular orbit, 28.5 degree inclination
- Because of Earth perturbations, momentum unloading is higher for this orbit
- Because of atmospheric drag, orbit maintenance is frequently required
 - Used DAS to estimate the aerodynamic area as well as the orbit decay rate
 - Assumed a mass-to-area ratio of 0.014 kg/m²

Delta-V Budget: LEO

	Start	MET	С3	Delta-V	ACS Tax	Margin	Total (m/
Event/Maneuver	Date	(Days)	(km2/s2)	(m/s)	(%)	(%)	s)
Launch	1/1/30	0.0	na				
Despin	1/1/30	0.0		5	0%	10%	5.5
Launch vehicle error correction	1/2/30	1.0		10	5%	10%	11.6
Additional correction for late							
launch	1/2/30	1.0		0	5%	10%	0.0
MCC-1	1/6/30	5.0		0	5%	10%	0.0
MCC-2	2/5/30	35.0		0	5%	10%	0.0
MCC-3 / Other (optional)	4/5/30	94.0		0	5%	10%	0.0
Stationkeeping (30 years)	7/4/30	184.0		240	5%	10%	277.2
Momentum unloading (30 years)	7/4/30	184.0		60	0%	10%	66.0
Disposal	1/1/50	7305.0		161	5%	10%	186.0
TOTALS				476.0			546.2

Assumed 550 km altitude circular orbit, 28.5 degrees. Except for the disposal maneuver, these are rough estimates.

Eclipse and Distance: LEO

Topic	Value	Units
Time to spacecraft separation	??	minutes
S/C separation in sunlight?	??	
Average eclipse	35	minutes
Longest eclipse	??	minutes
Average time between eclipses	60	minutes
Minimum time between eclipses	??	minutes
Max distance** in 1 yr	600	km
5 yr	600	km
10 yr	600	km
20 yr	600	km

^{**} Assumes station keeping and a starting orbit of 550 km circular altitude.

Eclipse analysis not done, but can be completed if the team decides to examine this option further.

Figures of Merit (FOMs)

- Subjective ranking of the different options
 - Use the "graduate student" grading scale
 - A = good work
 - B = need to improve
 - C = get the heck out of here

•	Grade	
	scale	Points
	Α	1.00
	В	0.75
	C	0.50

	Total Score	Launch Vehicle	Delta-V	Duration	Thermal	Comm	Environ- ment
Max Points>	100	10	15	20	20	20	15
SE-L2	91	Α	Α	A	Α	В	В
Drift-away	76	Α	A	С	Α	С	В
LDRO	84	Α	С	Α	В	Α	В
СТО	76	В	В	Α	С	Α	С
LEO	68	Α	С	В	С	С	Α

WINNER: SE-L2

FOM Rationale

	Launch Vehicle	Delta-V	Duration	Thermal	Comm	Environ-ment
		Smaller budget is	Will the observatory		How large must the	
			remain close enough		comm system be to	
	How large of a launch	•		How stable is the	p	How bad is the radiation and meteroid
SE-L2	vehicle is required? SE-L2, Drift-away, and	issue for the CTO. Budget is not bad, but	comm? Stays within 0.1 AU	thermal environment? Very stable.	Pdata downlink? 30 times further than	environment in this orbit? Ionizing radiation: no geomagnetic shielding from
	LDRO are roughly	the orbit maintenance	from Earth.			solar particle events which drive total dose. Galactic
	similar in LV	adds up over 20+				cosmic rays drive single event effects. Meteoroids
	requirements	years.				are same as interplanetary space.
Drift-away	**	No orbit maintenance		Very stable.	System would lose	lonizing radiation: no geomagnetic shielding from
	0 /		a few years.			solar particle events which drive total dose. Galactic
	similar in LV	maneuvers results in				cosmic rays drive single event effects. Meteoroids
	requirements	the lowest DV budget.				are same as interplanetary space.
LDRO	- / //		Always less than	Fairly stable, though	LDRO and CTO would	lonizing radiation: no geomagnetic shielding from
	– ,		500,000 km from	there could be some	•	solar particle events which drive total dose. Galactic
	similar in LV				_	cosmic rays drive single event effects. Meteoroids
	requirements	does require some		mission.	distance.	are same as interplanetary space.
		maneuvers.				
сто	CTO requires more		•	Least stable of the	•	Ionizing radiation environment is same as other
	performance (i.e., 1 or	•		options since the		candidates PLUS the passage through the radiation
	2 more SRBs).	maintenance, the new orbital debris		satellite passes within 16,000 km of Earth		belts which contributes significant total dose and single event effects. Meteoroid environment is
		standards may require		every orbit.	•	similar to others but with mild enhancement at
		a disposal maneuver		every orbit.		perigee due to gravitational focusing (speeds up
		at the end of any new				slower meteoroids), however spacecraft spends
		missions planned for				little time that low and apogee is same
		this orbit.				interplanetary environment.
LEO	Greatest launch	Controlled reentry	Duration is completely	Lots of thermal	In LEO, the NEN will be	In LEO, the observatory is shielded from solar
	vehicle performance is	required. Orbit	dependent on station-	cycling, reflected heat	used for comm. S-	particle events.
	to LEO.	maintenance required	keeping and orbit	from Earth.	band is limited to	
		,	maintenance.		5Mbs per customer,	
		during lifetime, which			and X-band is limited	
		can get expesive for			to 10Mbps.	
		long missions.				

Launch Vehicle Selection and Performance

- Baseline Atlas V 5-meter long shroud
 - Preliminary length and diameter estimates for the X-Ray Surveyor observatory indicate this size of shroud will be required
 - Estimates below are for the short shroud, so actual performance will be slightly less
 - Since launch is 2030, actual performance numbers are only useful for getting an idea of the performance available in the future

Source>	NLS quote		NLS website	NLS website	NLS website
Orbit type>	Elliptical Chandra-type		Drift-away	SE-L2 transfer	LDRO transfer
Altitude or C3>	16000 x 133000 km		C3 = 0.61 km2/s2	C3 = -0.7 km2/s2	C3 = -1.8 km2/s2
Burn profile>	2-burn	3-burn			
Atlas V 521	3355	3305	4115	4250	4345
Atlas V 531	3995	3950	4885	5005	5110
Atlas V 551	TBD	TBD	6040	6185	6310
Falcon 9 (v1.1)*	TBD	TBD	TBD	3715	TBD
Delta IV Heavy	TBD	TBD	10490	10735	10945

^{*} Note: performance data for the Full Thrust option of the Falcon 9 was not available, but is not expected to increase performance.

Atlas V 5xx Series Summary

PAYLOAD FAIRING (PLF)

 Features
 5-m Short
 5-m Medium
 5-m Long

 Diameter:
 5.4 m
 5.4 m
 5.4 m

 Length:
 20.7 m
 23.4 m
 26.5 m

 Mass:
 3,540 kg
 4,019 kg
 4,394 kg

Subsystems
Fairing: Bisector; Sandwich Construction with Graphite
Epoxy Face Sheets & an Aluminum

Honeycomb Core

Boattail: Fixed, Composite Sandwich Const Separation: Vertical Separation by a Linear Piston &

Cylinder Activated by a Pyrotechnic Cord; Horizontal Separation by an Expanding Tube Shearing a Notched Frame, Activated by a

Pyrotechnic Cord

COMMON CENTAUR

Features All Common with Atlas 400 Series
Size: 3.05-m Dia x 12.68-m Length with Extended

3.05-m Dia x 12.66-m Length with Extended

Inert Mass: 2,138 kg

Propellant: 20,830-kg LH₂ & LO₂ Guidance: Inertial

Subsystems

Structure: Pressure Stabilized Stainless Steel Tanks Separated by Common Ellipsoidal Bulkhead

Propulsion: One or Two Pratt & Whitney Restartable

Engine(s) RL10A-4-2

Model: RL10A-4-2Thrust: 99.2 kN (SEC) 198.4 kN (DEC)

I_{SP}: 450.5 s

(SEC) One Electromechanically Actuated

51-cm Columbium Fixed Nozzle Four 27-N Hydrazine Thrusters Eight 40-N Lateral Hydrazine Thrusters

(DEC) Two Hydraulically Actuated 51-cm Columbium

Extendible Nozzles

Eight 40-N Lateral Hydrazine Thrusters

Four 27-N Hydrazine Thrusters

Pneumatics: Common with Atlas V 400 Series Avionics: Common with Atlas V 400 Series

Insulation: Polyvinyl Chloride Foam (1.6-cm Thick),

Modified Adhesive Bonding with Optional

Radiation Shields

SOLID ROCKET BOOSTERS (SRB)

Zero-to-Five Ground-Lit

Size: 155-cm Dia x 19.5-m Length Mass: 46,559 kg (Each Fueled)

Thrust: 1,361 kN (Each)

ISp: 275 s Nozzle Cant: 3 deg

CENTAUR INTERSTAGE ADAPTER (C-ISA LARGE)

Features

Size: 3.81-m Dia x 4.46-m Length

Mass: 2,292 kg (Includes ISA, Aft Stub Adapter and Boattail)

Subsystems

Structure: Composite Sandwich (Aluminum Core/Graphite

Epoxy Face Sheets)

CCB CYLINDRICAL INTERSTAGE ADAPTER

Features

Size: 3.81-m Dia x 0.32-m Length

Mass: 282 kg

Subsystems

Structure: Aluminum Machined Rolled-Ring Forging

COMMON CORE BOOSTER™ (CCB)

Features Common with Atlas V 400 Series

Size: 3.81-m Dia x 32.46-m Length
Propellant: 284,089-kg LO₂ & RP-1
Inert Mass: 21,336 kg for 55Z Configuration

Guidance: From Upper Stage

Subsystems

Structure: Structurally Stable Aluminum Isogrid Tanks;

Integrally Machined Aft Transition Structure;

Composite Heat Shield

Separation: 8 Retro Rockets

Propulsion: Pratt & Whitney/NPO Energomash RD-180

Booster Engine (2 Chambers)

SL 100% Thrust = 3,827 kN, I_{SP} = 311.3 s Vac 100% Thrust = 4,152 kN, I_{SP} = 338.4 s

Pneumatics: Helium for Tank Pressurization, Computer-

Controlled Pressurization System

Hydraulics: Integral with Engine Provides Gimbal Control
Avionics: Flight Control, Flight Termination, Telemetry,
Redundant Rate Gyros, Electrical Power

Add Presentation Title to Master Slide

Delta-IV Heavy Summary

Second stage.

- · 3.2-m-dia stretched LO2 tank
- 5-m-dia LH2 tank
- Pratt & Whitney RL10B-2 engine

Payload static envelope for the composite fairing.

Falcon 9 Summary

Payload dynamic envelope.

Second stage summary.

Item	Description
Engine	Merlin
Quantity	1
Burn Time, max	387 sec
Max Thrust	934000 N (210,000 lbf)

Estimated Acceleration During Departure

- Estimated maximum acceleration during the Earth departure burn using Atlas V
 - Use Centaur single engine configuration (Atlas V)
 - Inert mass of 2138 kg
 - Observatory masses of 3000 and 4500 kg
 - Max thrust of 99,200 N
 - Results tabulated below
 - Does not include adapter, which would lower the maximum acceleration slightly
 - So long as observatory mass is greater than about 3000 kg, the acceleration during earth departure should be less than 2 g's

Observatory Mass	Max Acceleration	Centaur	Centaur Inert
(kg)	(g's)	Thrust (N)	Mass (kg)
3000	1.97	99200	2138
4500	1.52	99200	2138

If mass > 3000 kg, departure acceleration will be less than 2 g's

lational Aeronautics and Space Administration www.nasa.gov